



Fig. 1. Equivalent circuit of junction inductor.

read $3C_c$. Using the $\Delta-Y$ transformation, crossover capacitances can be transformed into shunt capacitance $12C_c$ which is located nearly in the middle of each junction inductor, as shown in Fig. 1(a). Equivalent terminal capacitance C' in the circuit of Fig. 1(b), which has equivalent impedance to the circuit of Fig. 1(a), is approximately given as $(12/4)C_c$ under the assumption that $\omega^2 3C_c L \ll 1$.

REFERENCES

[1] R. A. Pucel and Massé, "Microstrip propagation on magnetic substrates—Part I Design theory," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-20, pp. 304–308, May 1972.

Corrections to "High-Power Pulsed UHF and L Band p⁺-n-n⁺ Silicon TRAPATT Diode Lasers"

C. O. G. OBAH, E. BENKO, H. C. BOWERS,
T. A. MIDFORD, AND R. D. REGIER

In the above paper,¹ the last word in the title of the paper is incorrect. The correct title should read as follows: High-Power Pulsed UHF and L Band p⁺-n-n⁺ Silicon TRAPATT Diode Oscillators.

The third sentence of paragraph one of the Introduction on page 959 should read: In addition, small size, low cost, and high-quality spectral output are some of the prime circuit and device design requirements.

The last sentence of the second paragraph of Section IV on page 962 should read: Significantly too, the frequency of oscillation increases more slowly in the region of constant optimum voltage collapse ratio than in the other regions, strengthening the conjecture that optimum diode-external circuit interaction conditions exist in that region.

The date for [12] on page 969 should read: May 1973.

Manuscript received December 15, 1975.

The authors are with the Electron Dynamics Division, Hughes Aircraft Company, Torrance, CA 90509.

¹ C. O. G. Obah *et al.*, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-23, pp. 959–970, Dec. 1975.